Ecosystem Indicators 2010 MSHCP Symposium

PI: Dr. Jill S. Heaton University of Nevada, Reno Department of Geography jheaton@unr.edu

Project Manager: Lee Bice Clark County MSHPC Project # 2005-UNR-578

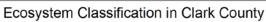
Project Team

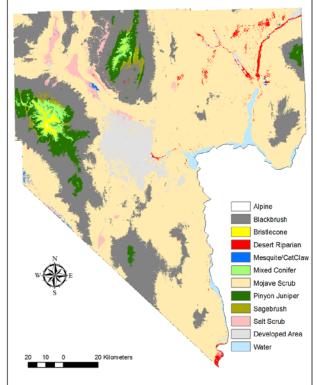
- Dr. Kyle House and Ms. Heather Green; UNR Nevada Bureau of Mines and Geology
- Drs. Pat Cashman and Jim Trexler;
 UNR Geologic Sciences
- Dr. Xin (Shane) Miao; Missouri State Geography
- Dr. David Charlet; CSN Biology
- Dr. Karin Hoff and Mr. Rohit Patil; UNR Geography
- Ms. Abbey Grimmer, students and staff; UNR Geo-Spatial Lab
- Mr. Lee Bice, MSHCP Project Manager

Project Deliverables

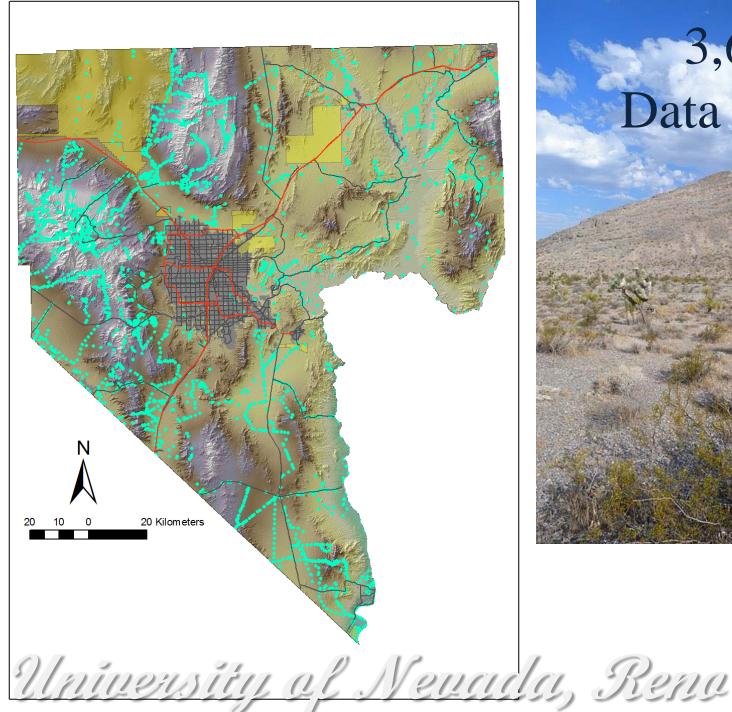
- Processed Quickbird Imagery – April, '09
- Vegetation Ecosystem Model
 - Interim March '10
 - Final Nov '10
- Geomorphology Model
 - Interim Dec '09
 - Final July'10
- Pilot Vegetation Ecosystem Model
 - Interim Sep'10
 - Final Nov '10

University of Nevada, Reno

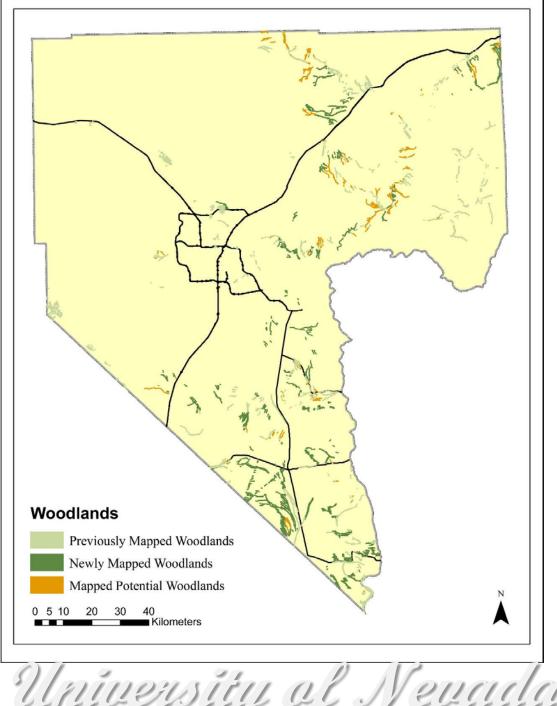




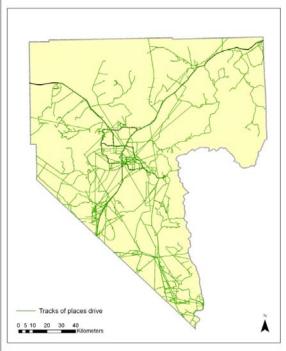
Ecosystem Modeling


- Evaluated 20+ different data sets, models, and remote sensing datasets
 - Original field data (1706 points)
 - Existing SWReGAP (1329 points)
 - Existing Red Rock Canyon Data (301 points)
 - Existing MSHCP Rare Plant Survey Data (289 points)
 - Original and Existing M/A mapping
 - National Hydrology Data and Original Mapping for Riparian
 - Compiled existing Springs data
- Finalized Methods
- Finalized Pilot Areas
 - Ivanpah Valley
 - Piute Valley
 - County-wide
- For more information see Interim Report submitted to Clark County

3,625 Data Points

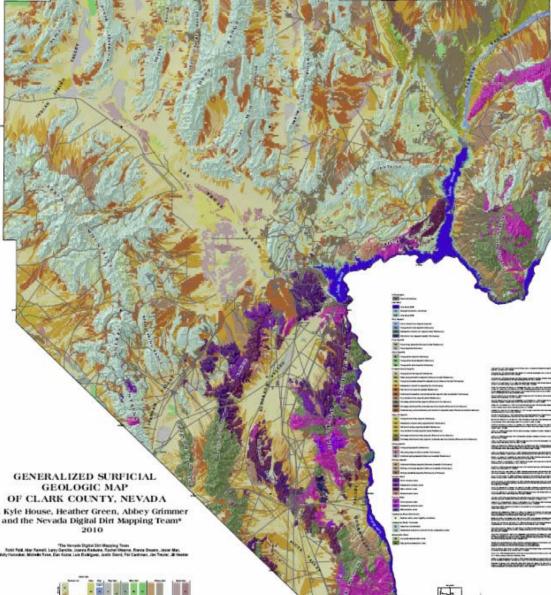

Pilot Areas

- Ivanpah Valley
 - Testing influence of geomorphology and spatial texture analysis on vegetation modeling
 - 1:24,000 and 1:150,000 geo mapping
- Piute Valley
 - Interrelationship between *Yucca sp.* distribution, elevation, fan age, and bedrock composition
- County-wide
 - Comparative assessment with and without spatial texture and 1:150,000 scale geomorphology data



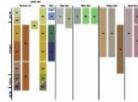
Mesquite/Acacia Mapping

 A Technical Report detailing methods and results is being prepared


Mesquite/Acacia Mapping

Woodland Area (Ha)

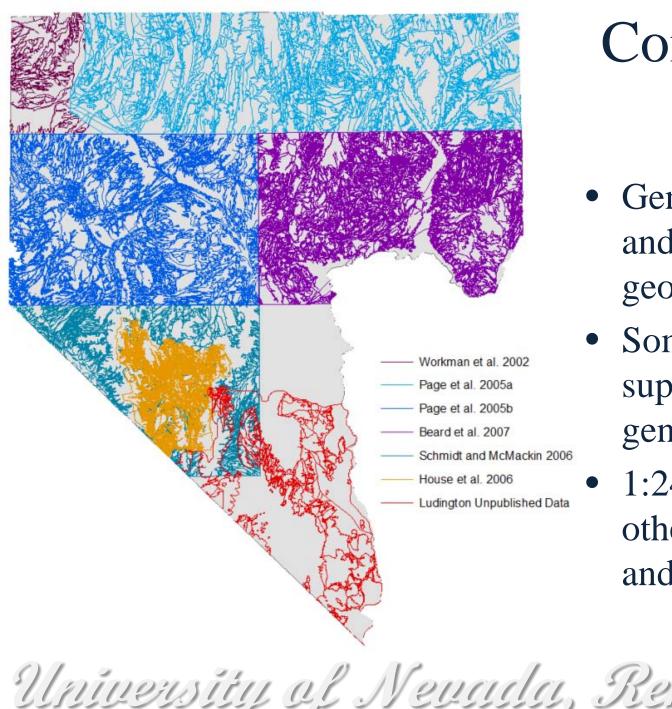
Species	Previous	New	Potential	Total
Acacia	5701.2	9485.9	2284.3	17471.3
Mesquite (sum of all species listed below)	5498.4	51.4	105.6	5639.2
Honey Mesquite	48.8	0.54		372.0
Screwbean Mesquite	147.9			518.4
Honey Mesquite/Tamarisk	652.3			
Mesquite	4549.9			
Mesquite/Tamarisk	83.2			
Honey-Screwbean Mesquite		50.9		
Mesquite/Acacia Mixed	16.3	628.33		644.7
Grand Total	11183.2	10165.6	2389.9	23755.1


University of Nevada, Reno

Surficial Geology

- Scale 1:150,000
- MMU 10 ha
- 47 Mapped Units
- Contains Generalized Bedrock Geology
- Only such map available we believe at any scale?
 - Consistent representation of surficial geology
 - Baseline dataset for integration with other environmental data and models
 - For more information see Final Report submitted to Clark County

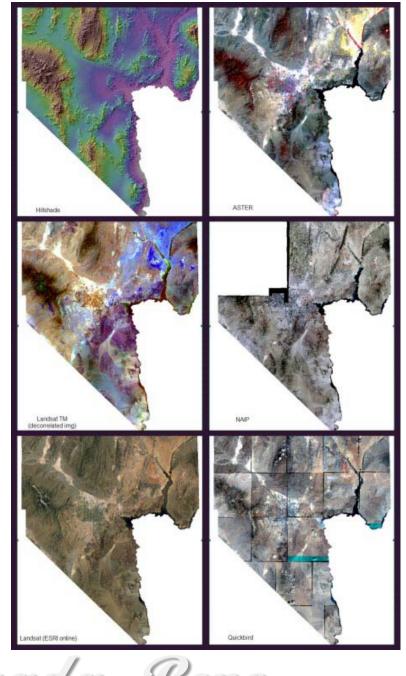
Mapping Workflow


- **Compilation**: Data acquisition and crude edge-matching
- Harmonization: Standardization of compiled data

- **Evaluation**: Check compiled data for consistency and accuracy
- **Refinement**: Improvement of best compiled data
- Augmentation and Correction: Reshaping compiled data
- New Line Work: New lines in unmapped or inadequately mapped areas

niversity of Nevada, Reno

Compilation


- Generally 1:100,000 and 1:250,000 for geomorphology
- Some 1:62,500 to supplement generalized bedrock
- 1:24,000 where no other data existed and digitizing guide

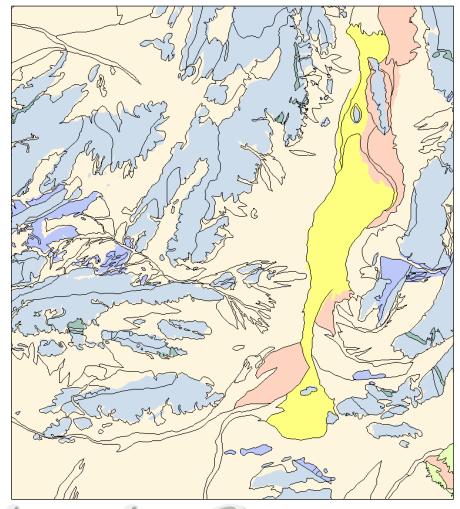
Harmonization and Evaluation

- Compile existing map literature (i.e. unit descriptions, correlation diagrams, line placement)
- Convert existing nomenclature to new scheme
- Evaluate against high resolution imagery

inensity of N

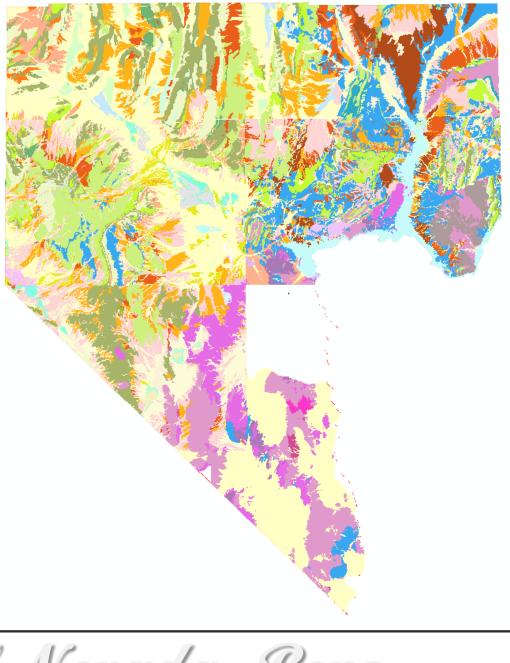
Refinement, Augment and Correct

• Original mapping too general



University of Nevada, Reno

Refine, Augment and Correct


- Colored polygons indicate original data
- Lines represent new, corrected, refined, augmented data

ineusitu

New Line Work

University of Nevada, Reno

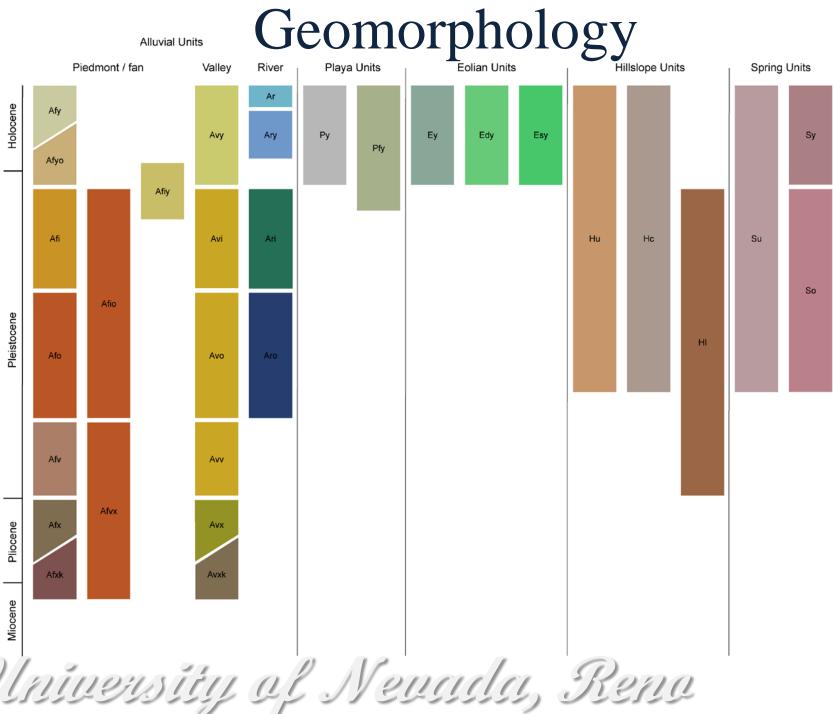
So, Where Are We Going?

- Frantically working on our Pilot Vegetation due Sept '10
- Final Vegetation, including Pilot, due Nov '10
- Final GIS and Data Transfer due Mar '11

University of Nevada, Reno

• Final Reports due Jun '11

Ecosystem Indicators 2010 MSHCP Symposium


PI: Dr. Jill S. Heaton University of Nevada, Reno Department of Geography jheaton@unr.edu

Project Manager: Lee Bice Clark County MSHPC Project # 2005-UNR-578

University of

a. Rena

UNIVERSITY OF NEVADA Geo Spatia Lab

Attribute	Bedrock Type		
Sc	Carbonates		
	Limestone		
	Dolomite		
	Interbedded limestone and dolomite		
Ss	Siliciclastic sedimentary rocks		
	Mudrock and shale		
	Chert and argillite		
	Sandstone and coarser		
	Interbedded shale and sandstone		
Scs	Interbedded carbonates and siliciclastic sedimentary rocks		
	Felsic igneous		
Ipf	Intrusive (granite)		
lvf	Extrusive (rhyolite and tuff)		
	Intermediate igneous		
lpi	Intrusive (diorite)		
lvi	Extrusive (andesite)		
	Mafic igneous		
lpm	Intrusive (gabbro)		
lvm	Extrusive (basalt)		
lvx	Mixed volcanic rocks		
	Metamorphic		
Mh	High grade (crystalline rocks)		
MI	Low grade (phyllite, argillite, quartzite)		

Generalized Bedrock

